今日头条的推荐算法,相信是做自媒体朋友最为关心的吧,就在前不几的头条大会上,今日头条资深架构师曹欢欢首次公开揭秘。
1月11日,今日头条在总部举办了一场推荐算法交流会,因为报名人数远远超过了预期,交流会还临时换了场地。
冷启动(新用户首次使用)是否可以通过第三方数据来避免推荐不准算法应该如何平衡广告内容和资讯内容推荐的“准”和信息茧房的矛盾,应该如何协调
今日头条公开算法的基本原理,并接受建言,体现出了一家平台对技术发展的责任感与诚意,这将对算法应用乃至整个互联网行业,起到巨大的积极推动作用。
今日头条副总编辑徐一龙
会议由今日头条副总编辑徐一龙主持。徐一龙在谈到今日头条对行业公开透明自己算法原理的初衷时说,算法也是一种“法”,都是通过一定的规则和方法,达成预期的一种效果。算法和法律法规一样,如果施行的好,都很高效,也都要求透明。
曹欢欢博士在现场分享了今日头条推荐算法的基本原理,并详细介绍了算法模型设计维度与策略。包括如何在线训练大规模推荐模型,典型召回策略的设计方法,多目标如何融合等核心问题。此外,他还重点讲解了今日头条的内容安全机制及相关举措,公开了风险内容识别技术以及泛低质内容识别技术。
他表示:“算法分发并非是把所有决策都交给机器,我们会不断纠偏,设计监督并管理算法模型。希望这次分享能让更多的人理解算法,并共同参与到算法模型的制定中来,以改善算法,更好的为用户服务,让算法为社会创造更大的价值。”
现场观众
此次今日头条将算法透明化,并接受建言,属于行业首例。算法原则历来属于公司行业机密,极少有公司会对外公布。今日头条方面表示,人工智能发展带来的挑战,是人类此前没有遭遇过的。当企业发展壮大时,有责任也有义务,与行业一道积极思考与研究新技术可能带来的机遇和风险。
据介绍,阿里腾讯百度美团新浪网易等科技公司的算法工程师和产品经理都去了。看来大家对今日头条到底用了什么推荐算法,那是相当的好奇。
在当天的交流会上,今日头条资深算法架构师中国科学技术大学计算机博士曹欢欢带来了题为《让算法公开透明》的分享,首次面向行业公开算法原理。
今日头条资深算法架构师曹欢欢讲解今日头条算法原理他表示:“算法分发并非是把所有决策都交给机器,我们会不断纠偏,设计监督并管理算法模型。希望这次分享能让更多的人理解算法,并共同参与到算法模型的制定中来,以改善算法,更好的为用户服务,让算法为社会创造更大的价值。”
据曹欢欢介绍,今日头条旗下几款产品都在沿用同一套大的算法推荐系统,但根据业务不同,每套系统的架构会有所调整。 曹欢欢在现场的PPT里公布了头条使用的五种推荐算法,包括传统的协同过滤模型,监督学习算法Logistic Regression模型,基于深度学习的Factorization Machine,以及DNN和GBDT。 曹欢欢介绍说,现在很难有一套通用的架构模型适用于所有的推荐场景,所以很多公司会做多个算法的组合,比如现在很流行将LR和DNN结合,甚至前几年Facebook也是将LR和GBDT算法做结合。今日头条也基本是一套大算法,根据业务不同再具体调整结构。 在解释了算法之后,曹欢欢进一步解密了头条的推荐如何工作。曹欢欢表示,主要有四类最重要的用户特征,将会输入给算法,影响到推荐算法的工作。
第一类是相关性特征,就是评估内容的属性和维度与用户是否匹配。显性的匹配包括关键词匹配分类匹配来源匹配主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的核心距离可以得出。 第二类是环境特征,包括地理位置时间。这些既是bias(基础)特征,也能以此构建一些匹配特征。 第三类是热度特征。包括全局热度分类热度,主题热度,以及关键词热度等。热度信息在大的推荐系统特别在冷启动的时候非常有效。 第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似兴趣分类相似主题相似兴趣词相似,甚至向量相似,从而扩展模型的探索能力。
分享过后,曹欢欢在还解答了各位对算法的疑问,包括今日头条如何实现冷启动,广告和内容该怎样平衡,怎样准确地拓展用户兴趣图谱等切实的工程性问题。同时,也听取了大家对今日头条算法的意见和建议。